» »

Бактерии устойчивые к ионизирующему излучению. Российские ученые поняли, как самые живучие бактерии выживают в радиации

16.01.2024

Влияние физических факторов .

Влияние температуры. Различные группы микроорга­низмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) - мезофилами, при вы­сокой - термофилами.

К психрофильным микроорганизмам относится боль­шая группа сапрофитов - обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, све­тящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бакте­рии (возбудитель псевдотуберкулеза размножается при темпера­туре 4 °С). В зависимости от температуры культивирования свой­ства бактерий меняются. Интервал температур, при кото­ром возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум - от 15 до 40 °С, прибли­жаясь к температурному оптимуму мезофильных бактерий.

Мезофилы включают основную группу патогенных и услов­но-патогенных бактерий. Они растут в диапазоне температур 10- 47 °С; оптимум роста для большинства из них 37 °С.

При более высоких температурах (от 40 до 90 °С) развива­ются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при темпе­ратуре 250-300 °С и давлении 262 атм.

Термофилы обитают в горячих источниках, участвуют в процессах самонагревания на­воза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компос­том. Поскольку навоз наиболее богат термофилами, их рассмат­ривают как показатель загрязненности почвы.

Хорошо выдерживают микроорганизмы действие низких тем­ператур. Поэтому их можно долго хранить в замороженном со­стоянии, в том числе при температуре жидкого газа (-173 °С).

Высушивание . Обезвоживание вызывает нарушение функ­ций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гоно­реи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.

Высушивание под вакуумом из замороженного состояния - лиофилизацию - используют для продления жизнеспособнос­ти, консервирования микроорганизмов. Лиофилизированные куль­туры микроорганизмов и иммунобиологические препараты дли­тельно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

Действие излучения . Неионизирующее излучение - уль­трафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение - гамма-излучение радиоактивных ве­ществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предме­тов в больницах, родильных домах, микробиологических лабо­раториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200-450 нм.


Ионизирующее излучение применяют для стерилизации од­норазовой пластиковой микробиологической посуды, питатель­ных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию иони­зирующих излучений, например Micrococcus radiodurans была вы­делена из ядерного реактора.

Стерилизация предполагает полную инактивацию микробов в объектах, подвергающихся обработке.

Существует три основных метода стерили­зации: тепловой, лучевой, химической.

Тепловая стерилизация основана на чувстви­тельности микробов к высокой температуре. При 60 "С и наличии воды происходит денату­рация белка, деградация нуклеиновых кислот, липидов, вследствие чего вегетативные фор­мы микробов погибают. Споры, содержащие очень большое количество воды в связанном состоянии и обладающие плотными оболоч­ками, инактивируются при 160-170 °С.

Для тепловой стерилизации применяют, в основном, сухой жар и пар под давлением.

Стерилизацию сухим жаром осуществля­ют в воздушных стерилизаторах (прежнее название - «сухожаровые шкафы или печи Пастера»). Воздушный стерилизатор пред­ставляет собой металлический плотно закры­вающийся шкаф, нагревающийся с помощью электричества и снабженный термометром. Обеззараживание материала в нем произво­дят, как правило, при 160 °С в течение 120 мин. Однако возможны и другие режимы: 200 °С - 30 мин, 180 "С - 40 мин.

Стерилизуют сухим жаром лабораторную посуду и другие изделия из стекла, инстру­менты, силиконовую резину, т. е. объекты, которые не теряют своих качеств при высокой температуре.

Большая часть стерилизуемых предметов не выдерживает подобной обработки, и поэтому их обеззараживают в паровых стерилизаторах .

Обработка паром под давлением в паровых стерилизаторах (старое название - «автокла­вы») является наиболее универсальным мето­дом стерилизации.

Паровой стерилизатор (существует множес­тво его модификаций) - металлический цилиндр с прочными стенками, герметически закрывающийся, состоящий из водопаровой и стерилизующей камер. Аппарат снабжен манометром, термометром и другими конт­рольно-измерительными приборами. В авто­клаве создается повышенное давление, что приводит к увеличению температуры кипения.

Поскольку кроме высокой температуры на микробы оказывает воздействие и пар, споры погибают уже при 120 °С. Наиболее распростра­ненный режим работы парового стерилизатора: 2 атм - 121 °С - 15-20 мин. Время стерилиза­ции уменьшается при повышении атмосфер­ного давления, а следовательно, и температуры кипения (136 °С - 5 мин). Микробы погибают за несколько секунд, но обработку материала производят в течение большего времени, так как, во-первых, высокая температура должна быть и внутри стерилизуемого материала и, во-вторых, существует так называемое поле безопасности (рассчитанное на небольшую не­исправность автоклава).

Стерилизуют в автоклаве бульшую часть предметов: перевязочный материал, белье, коррозионно-устойчивые металлические инструменты, питательные среды, растворы, инфекционный материал и т. д.

Одной из разновидностей тепловой стери­лизации является дробная стерилизация , ко­торую применяют для обработки материалов, не выдерживающих температуру выше 100 °С, например, для стерилизации питательных сред с углеводами, желатина. Их нагревают в во­дяной бане при 80 °С в течение 30-60 мин.

В настоящее время применяют еще один метод тепловой стерилизации, предназначен­ный специально для молока - ультравысоко­температурный (УВТ): молоко обрабатывают в течение нескольких секунд при 130-150 °С.

Химическая стерилизация предполагает ис­пользование токсичных газов: оксида этиле­на, смеси ОБ (смеси оксида этилена и бро­мистого метила в весовом соотношении 1:2,5) и формальдегида. Эти вещества являются ал-килирующими агентами, их способность в присутствии воды инактивировать активные группы в ферментах, других белках, ДНК и РНК приводит к гибели микроорганизмов.

Стерилизация газами осуществляется в присутствии пара при температуре от 18 до 80 °С в специальных камерах. В больницах используют формальдегид, в промышленных условиях - оксид этилена и смесь ОБ.

Перед химической стерилизацией все из­делия, подлежащие обработке, должны быть высушены.

Этот вид стерилизации небезопасен для персонала, для окружающей среды и для па­циентов, пользующихся простерилизованными предметами (большинство стерилизующих агентов остается на предметах).

Однако существуют объекты, которые мо­гут быть повреждены нагреванием, например, оптические приборы, радио- и электронная аппаратура, предметы из нетермостойких по­лимеров, питательные среды с белком и т. п., для которых пригодна только химическая сте­рилизация. Например, космические корабли и спутники, укомплектованные точной ап­паратурой, для их деконтаминации обезв­реживают газовой смесью (оксид этилена и бромистого метила).

В последнее время в связи с широким рас­пространением в медицинской практике изде­лий из термолабильных материалов, снабжен­ных оптическими устройствами, например эндоскопов, стали применять обезврежива­ние с помощью химических растворов . После очистки и дезинфекции прибор помещают на определенное время (от 45 до 60 мин) в сте­рилизующий раствор, затем прибор должен быть отмыт стерильной водой. Для стери­лизации и отмывки используют стерильные емкости с крышками. Простерилизованное и отмытое от стерилизующего раствора изделие высушивают стерильными салфетками и по­мещают в стерильную емкость. Все манипу­ляции проводят в асептических условиях и в стерильных перчатках. Хранят эти изделия не более 3 суток.

Лучевая стерилизация осуществляется либо с помощью гамма-излучения, либо с помо­щью ускоренных электронов.

Лучевая стерилизация является альтернати­вой газовой стерилизации в промышленных условиях, и применяют ее также в тех случаях, когда стерилизуемые предметы не выдержи­вают высокой температуры. Лучевая стерили­зация позволяет обрабатывать сразу большое количество предметов (например, одноразо­вых шприцев, систем для переливания крови). Благодаря возможности широкомасштабной стерилизации, применение этого метода впол­не оправданно, несмотря на его экологичес­кую опасность и неэкономичность.

Еще одним способом стерилизации является фильтрование . Фильтрование с помощью раз­личных фильтров (керамических, асбестовых, стеклянных), а в особенности мембранных уль­трафильтров из коллоидных растворов нитроцеллюкозы или других веществ позволяет освободить жидкости (сыворотку крови, лекарства) от бак­терий, грибов, простейших и даже вирусов. Для ускорения процесса фильтрации обычно создают повышенное давление в емкости с фильтруемой жидкостью или пониженное давление в емкости с фильтратом.

В настоящее время все более широкое при­менение находят современные методы стери­лизации, созданные на основе новых техно­логий, с использованием плазмы, озона.

Солнечное излучение, проходящее через верхние слои атмосферы и достигающее поверхности Земли состоит из электромагнитных волн с длиной 300-10.000 нм.

75 % падающего на Землю света - это видимая часть спектра – охватывает диапазон 390-760 нм . Эта часть воспринимается человеческим взглядом.

20 % - инфракрасное излучение (ближнее) с λ волн от 790 нм и далее (790-1100).

5 % - УФ с λ волн 300-380 нм.

Озоновый слой поглощает волны с длиной 220-300 нм .

Влияние видимого света на микроорганизмы

Видимый свет используется фотосинтезирующими микроорганизмами. Спектральный состав ФАР различен для разных групп микроорганизмов и зависит от набора пигментов. Оксигенный фотосинтез (цианобактерии, прохлорофиты) возможен в диапазоне от 300 до 750 нм. У этих бактерий хлорофилл а и b , с максимумом поглощения 680-685 и 650-660 нм, соответственно. У цианобактерий фикобилипротеиды (красные и синие пигменты) поглощают свет с длиной 450-700 нм.

Аноксигенный фотосинтез (пурпурные, зеленые бактерии) – в диапазоне от 300 до 1100 нм. Бактериохлорофилл b поглощает свет с длиной волны 1020-1040 вплоть до 1100 нм.

У всех фотосинтезирующих прокариот дополнительные светособирающие пигменты – каротиноиды, поглощающие свет в синей и сине-зеленой части спектра (450-550 нм).

Фототрофные бактерии обитают в анаэробной зоне водоемов, где есть H 2 S. На глубину 10-30 м инфракрасное излучение не проникает, максимум энергии приходится на свет λ волн 450-500 нм.

Видимый свет влияет на поведение фототрофных бактерий. Наблюдается явление фототаксиса . Ф. – это реакция бактерий на изменение спектрального состава света или освещенности. У эубактерий фоторецепторами служат бактериохлорофиллы и каротиноиды. У архей обнаружены специальные сенсорные пигменты (у галобактерий сенсорные родопсины). Положительный фототаксис – движение бактерий к свету, отрицательный – движение клеток в сторону уменьшения освещенности.

Для некоторых бактерий, не использующих энергию света, он служит в качестве регулятора определенных процессов обмена. Так, у водной бактерии P. putida наблюдали активацию светом некоторых ферментов, что можно рассматривать как адаптацию, поскольку именно при освещении начинается синтез фитопланктона, продукты, которого используются этой гетеротрофной бактерией.

Для некоторых нефотосинтезирующих бактерий характерна фотохромность. Фотохромность – это зависимость образования пигментов от освещения. Характерна для миксобактерий, многих актиномицетов и близких им микроорганизмам. Например, синтез каротиноидов некоторыми микобактериями стимулируется синим цветом. Фотохромность может контролироваться как хромосомными, так и плазмидными генами. Пигменты способны защищать эти микроорганизмы от действия видимого цвета.



Солнечный свет обладает сильным антимикробным действием. Действие видимого света ответственно менее, чем за 1 % летальный повреждений (80 % летальных повреждений связано с действием света длиной волны менее 312 нм). Видимый свет длиной волны 450 нм индуцирует замены пар оснований и мутации сдвига рамки у E. coli . Световые волны длиной 550 нм, и особенно 410 нм вызывают фотолизис Myxococcus xanthus . Эффект определяется поглощением света железопорфиринами.

Существуют вещества фотосенсибилизаторы, в молекуле которых имеется хромофор, поглощающий свет и передающий его энергию другим молекулам, не способным поглощать свет. Через бесцветные клетки свет проходит без последствий. Но если ввести в такую клетку фотосенсибилизатор, она повреждается. Природные фотосенсибилизаторы – хлорофилл, фикобилины, порфирины и др.

Влияние инфракрасного излучения на микроорганизмы

Для излучения с длиной волны более 1100 нм к настоящему времени не зарегистрировано каких-либо биологических эффектов. Основное действие инфракрасного излучения – нагревание.

Влияние ультрафиолетовых лучей на микроорганизмы

Для микроорганизмов наиболее опасно УФ-излучение. Различают ближний, средний и дальний УФ.

Ближний УФ – это излучение с длиной волны 400-320 нм .

Средний УФ – λ=320-290 нм .

Дальний УФ – λ=290-200 нм .

Ближний УФ в небольших дозах нарушает механизмы движения и таксиса. При этом хромофором является флавопротеин.

В сублетальных дозах вызывает замедление роста, скорость деления клеток, угнетается индукция ферментов, способность бактерий поддерживать развитие фага.

Эти эффекты определяются тем, что у бактерий в т-РНК в 8-й позиции присутствует необычное основание 4-тиоуридин (отсутствует у эукариот). Это основание интенсивно поглощает УФ, наибольший эффект оказывает свет с длиной волны 340 нм. Возбужденный светом 4-тиоуридин связывается с цитозином, находящемся в 13-м положении в т-РНК, что препятствует связыванию т-РНК с аминокислотами, и, следовательно, ведет к приостановке синтеза белка.

При относительно высоких дозах ближнего УФ – мутагенный и летальный эффекты. Нарушения ДНК при этом не столько сами УФ-лучи, сколько другие возбужденные светом молекулы. Также в этих эффектах имеет значение поглощение ближнего УФ 4-тиоуридином. Мутагенное и летальное действие зависит от присутствия кислорода.

Летальный эффект связан не только с повреждениями ДНК, но и мембран (их транспортных систем).

Биологические эффекты среднего и дальнего УФ сходны. ДНК интенсивно поглощает УФ в области 240-300 нм., т.е. в области среднего и дальнего УФ с пиком поглощения в области 254 нм В лаб. УФ-лампах преобладает излучение в области 260 нм (нижний предел длины волны света, падающего на земную поверхность, около 290 нм).

Средний и дальний УФ вызывает мутагенный и летальный эффекты. Основной механизм повреждающего действия – образования пиримидиновых димеров . В состав димеров могут входить два соседних тиминовых (Т-Т) или цитозиновых (С-С) или тиминовый и цитозиновый (Т-С). Образование димеров происходит за счет ковалентных взаимодействий между основаниями ДНК. Кроме этого, происходит разрыв водородных связей в ДНК. Это (и 1, и 2) ведет к появлению нежизнеспособных мутантов. Также под действием УФ происходит гидроксилирование цитозина и урацила, образование сшивок ДНК с белком, формирование поперечных сшивок ДНК, денатурация ДНК.

В связи с повреждающим и летальным действием УФ-лучи, несмотря на то, что это наиболее богатые энергией лучи, в процессе фотосинтеза не используются. Нижний предел фотосинтеза – это использование волн с длиной 450 нм.

Влияние ионизирующего излучения на микроорганизмы

Ионизирующее излучение – это излучение с очень высокой энергией, способно выбивать электроны из атомов и присоединять их к другим атомам с образованием положительных и отрицательных ионов. Полагают, что ионизация – основная причина радиационного повреждения цитоплазмы, и степень повреждения пропорциональна числу пар ионов.

Свет и большая часть солнечного излучения не обладают такой способностью.

Источником ионизирующего излучения служат радиоактивные вещества, содержащиеся в горных породах. Также поступает из космоса. В период солнечных вспышек повышается радиационный фон.

Искусственное ионизирующее излучение возникает в результате испытаний ядерного оружия, работы АЭС, применения радиоизотопов в медицине, науке и т.д.

Важное экологическое значение имеют следующие виды ионизирующего излучения :

1. α-излучение – корпускулярное излучение – это ядра атомов гелия. Длина пробега в воздухе несколько см. Их останавливает лист бумаги или роговой слой кожи человека. Однако, будучи остановленными вызывают сильную локальную ионизацию.

2. β-излучение - корпускулярное излучение – это быстрые электроны. Длина пробега в воздухе несколько метров, а в ткани несколько см.

α-излучение и β-излучение обладают наибольшим эффектом, будучи поглощены живой тканью.

3. γ-излучение – ионизирующее электромагнитное излучение. Обладает высокой проникающей способностью. Легко проникает в живые ткани. Может оказывать действие, когда источник излучения находится вне организма.

4. Рентгеновское излучение - электромагнитное излучение, очень близко к γ-излучению.

К ионизирующему излучению наиболее устойчивы микроорганизмы (более 10 6 Рад). 1 Рад – это такая доза излучения, при которой на 1 г ткани приходится 100 эрг энергии. 1 Рентген=1 Рад. Млекопитающие чувствительны к дозе 100 Рад.

Механизм повреждающего действия

Основная мишень для ионизирующего излучения – ДНК. Повреждения ДНК бывают прямыми и опосредованными. Прямые – это одноцепочечные или двухцепочечные разрывы ДНК. Бывают редко.

Более часты опосредованные повреждения. Возникают в связи с образованием свободных радикалов, которые вызывают одно- и двухцепочечные разрывы (модифицируют пиримидиновые основания), что ведет к денатурации ДНК. Кроме того, возникающие свободные радикалы вызывают денатурацию белка. Все это приводит к гибели микроорганизмов, в т.ч. вирусов.

Механизмы радиоустойчивости

1. Основным механизмом радиорезистентности (как к УФ, так и ионизирующему облучению) является хорошо отлаженная система репарации ДНК.

2. Пигменты (каротиноиды) обладают радиопротекторными свойствами, но обеспечивают эффективную защиту от действия УФ.

3. Наличие в клетках веществ-радиопротекторов (например, серусодержащие аминокислоты у D. radiophilus ), защищает клетку от излучения, но этот механизм недостаточен.

4. Клеточная стенка может играть роль в системах репарации ДНК. У D. radiophilus под действием радиации высвобождается фермент экзонуклеаза, участвующий в репарации ДНК.

5. Увеличенное содержание ДНК.

Радиорезистентность микроорганизмов варьирует в широких пределах. Степень устойчивости организма к излучениям различных типов, особенно УФ и ионизирующим излучениям могут не совпадать.

Одним из наиболее резистентных к УФ-излучению считается морской жгутиконосец Bodo marina . Устойчивость может быть связана с особенностями места обитания. Так, микроорганизмы, выделенные из родоновых источников, оказываются в 3-10 раз более резистентными к радиации, чем их сородичи из обычных мест обитания.

В охладительных системах ядерных реакторах, где доза излучения превышает 10 6 ФЭР (физический эквивалент рентгена) обитают разные бактерии, в т.ч. рода Рseudomonas .

Одна из наиболее устойчивых бактерий как к УФ, так и γ-излучению относится к дейнококкам (р. Deinococcus ) – D. radiophilus . Эта бактерия, видимо, способна репарировать даже двухнитевые разрывы ДНК, летальные для большинства микроорганизмов.

Ближний ультрафиолет (УФ) - излучение с длиной волны 400 - 320 нм - даже в невысоких дозах оказывает на бактерий определенное действие. Так, при освещении ближним УФ подвижных клеток Е. coli или Salmonella typhimurium сначала наблюдается увеличение частоты кувырканий клеток, т.е. репеллентный эффект, затем кувыркания полностью прекращаются и наступает паралич жгутиков, т.е. свет нарушает механизмы движения и таксиса. При этом хромофором является флавопротеин.

В сублетальных дозах ближний УФ вызывает замедление роста культур, главным образом за счет удлинения лаг-фазы. Скорость деления клеток также несколько снижается, подавляется способность бактерий поддерживать развитие фага и угнетается индукция ферментов. Эти эффекты определяются в основном поглощением УФ-лучей 4-тиоуридином - необычным основанием, присутствующим в 8-й позиции у многих тРНК прокариот (но не у эукариот). Наибольший эффект оказывает свет длиной волны около 340 нм. Возбужденный светом 4-гиоуредин образует сшивки с цитозином, находящимся в 13-м положении в тРНК, что препятствует связыванию тРНК с аминокислотами и приводит к увеличению образования гуанозинтрифосфата на рибосомах и к приостановке синтеза РНК и белка соответственно. У Bacillus subtillis обнаружена и другая чувствительная к ближнему УФ-система, у которой воспринимающим свет хромофором является менахинон.

При относительно высоких дозах облучения ближним УФ наблюдаются мутагенные и летальные эффекты. Нарушение ДНК вызывают не столько сами УФ-лучи, сколько различные другие возбужденные светом молекулы. И в этих эффектах имеет значение поглощение ближнего УФ 4- тиоуредином. Мутагенное и летальное действие ближнего УФ в значительной степени зависит от присутствия кислорода.

Летальный эффект при облучении ближним УФ может быть связан с повреждением не только ДНК, но и мембран, в частности их транспортных систем. Чувствительность к ближнему УФ бактерии может сильно зависеть от стадии роста культуры, что не наблюдается при действии дальнего УФ.

Эффект действия ближнего УФ может быть опосредован фотосенсибилизатором. Так, в присутствии акридина у E.coli ближний УФ вызывает нарушение как ДНК, так и внешней цитоплазматической мембран, в результате чего клетки становятся чувствительными к лизоциму, детергентам, осмотическому шоку.

Ближний УФ может при невысоких дозах облучения вызывать фотопроекцию, т.е. снижать биологический эффект последующего облучения дальним УФ. Представление о механизме этого эффекта противоречивы. При относительно высоких дозах облучения ближним УФ может наблюдаться и противоположный эффект, т.е. усиление действия последующего облучения дальним УФ.

Средний УФ - это излучение с длиной волны 320 - 290 нм, и дальний УФ - с длиной волны 290 - 200 нм. Биологические эффекты действия среднего и дальнего УФ сходны. Как уже упоминалось, при облучении солнечным светом гибель бактерий связана в основном с действием УФ. Нижний предел длины волны света, попадающего на земную поверхность, составляет около 290 нм, в исследованиях же используют источники света с меньшей длиной волны. Считают, что резистентность организма к солнечной радиации, как правило, соответствует его устойчивости к неионизирующему излучению от искусственных источников.

ДНК интенсивно поглощает УФ в области 240 - 300 нм, т.е. в области среднего и дальнего УФ, с пиком поглощения в области 254 нм. Этим объясняется высокая мутагенная и летальная эффективность облучения средним и дальним УФ. Образование пиримидиновых димеров в ДНК является основным механизмом, обусловливающим летальный и мутагенный эффекты. В состав димеров могут входить 2 соседних тиминовых или цитозиновых остатка либо 1 тиминовый и 1 цитозиновый остатки. Под влиянием УФ-облучения происходит также гидроксилирование цитозина и урацила, образование цитозин-тиминовых аддуктов, сшивок ДНК с белком, формирование поперечных сшивок ДНК, разрывы цепей и денатурация ДНК. Такие повреждения возрастают при повышении интенсивности облучения.

Ионизирующее излучение составляет определенный компонент естественной радиации, определяемый нестабильными изотопами, постоянно находящимися в почве и атмосферных осадках. В областях залегания радиоактивных минералов естественный фон радиации повышен. Изотопы могут попадать в живые организмы и тогда они подвергаются внутреннему облучению. Бактерии иногда способны накапливать некоторые элементы в очень больших количествах.

Ионизирующее излучение возникает также под влиянием космических лучей. Космическое пространство служит источником первичных космических лучей, которые дают начало вторичным, воздействующим на живые организмы. Интенсивность такого излучения зависит от географической широты, особенно от высоты над уровнем моря, и приблизительно удваивается каждые 1500 м. В период солнечных вспышек фон космической радиации повышен. Искусственное ионизирующее излучение возникает в результате испытаний ядерного оружия, работы АЭС, применения радиоизотопов в медицинских, научных и других целях. Наличие таких источников - причина того, что микроорганизмы в наши дни подвергаются высоким дозам облучения.

Ионизирующие излучения также вызывают повреждения ДНК, которые принято подразделять на прямые и опосредованные, возникающие в связи с образованием свободных радикалов. Повреждения преимущественно представляют собой одноцепочечные или двухцепочечные разрывы молекулы ДНК.

Радиорезистентность различных бактерий варьирует в очень широких пределах и контролируется многими генами. Сравнительно легко могут быть получены мутанты, более радиорезистентные или радиочувствительные. Радиорезистентность зависит прежде всего от работы различных систем репарации и регуляции. При этом степени устойчивости организма к излучениям различных типов, особенно УФ и ионизирующим излучениям, могут не совпадать. Различные репарационные системы бактерий будут рассмотрены ниже.

Установлена связь радиоустойчивости бактерий с особенностями ее местообитания. Так, микроорганизмы, выделенные из радоновых минеральных источников, оказываются в 3 - 10 раз более резистентными к радиации, чем организмы тех же видов, выделенные из нерадиоактивной воды. В охладительных системах ядерных реакторов, где средняя доза излучения превышает 10 6 ФЭР (физический эквивалент рентгена), обитают разные бактерии, в частности представители рода Pseudomonas. Однако в основном трудно найти разумное объяснение адаптационного значения высокой радиоустойчивости некоторых бактерий. Особенно высока радиоустойчивость некоторых кокков, выделенных из облученных продуктов. В данном случае очевидно, что облучение могло служить фактором отбора, но не фактором, вызвавшим адаптацию. Так, доза УФ, необходимая для инактивации 90% клеток УФ-резистентного штамма Е. coli, составляет около 1000 эрг/мм “ 2 , в то время как для достижения такого же эффекта у Deinococcus radiodurans требуется доза в 10000 - 15000 эрг/мм" 2 или 5 х 10 5 рад в случае радиоактивного облучения. Еще большей устойчивостью к УФ- и у-излучению обладает кокк Deinococcus radiophilus. Как уже упоминалось, уровень радиорезистентности определяется главным образом степенью развитости репарационных систем. Deinococcus radiodurans, видимо, способен репарировать даже двухнитевые разрывы ДНК, летальные для большинства микроорганизмов.

Степень радиоустойчивости некоторых бактерий значительно превышает предельный уровень радиации, с которым организмы могут сталкиваться в природе. Наиболее вероятным объяснением этого несоответствия может быть предположение о том, что радиоустойчивость - лишь одно из многообразных проявлений действия систем широкого назначения. Правильнее было бы говорить о степени устойчивости бактерий к определенным нарушениям в структуре их клеток, чем об устойчивости к воздействию определенных факторов среды, поскольку одинаковые нарушения могут быть вызваны разными причинами. Это относится прежде всего к системам репарации повреждений ДНК.

Физические, химические и биологические факторы окружающей среды оказывают раз­личное воздействие на микроорганизмы: бак­терицидное - приводящее к гибели клетки; бактериостатическое - подавляющее размно­жение микроорганизмов; мутагенное - изме­няющее наследственные свойства микробов.

4.3.1. Влияние физических факторов

Влияние температуры. Представители различ­ных групп микроорганизмов развиваются при определенных диапазонах температур. Бактерии,


растущие при низкой температуре, называют психрофилами; при средней (около 37 °С) - ме­зофитами; при высокой - термофилами.

Психрофильные микроорганизмы растут при температуре от -10 до 40 "С; температурный оп­тимум колеблется от 15 до 40 °С, приближаясь к температурному оптимуму мезофильных бакте­рий. К психрофилам относится большая группа сапрофитов - обитателей почвы, морей, пре­сных водоемов и сточных вод (железобактерии, псевдомонады, светящиеся бактерии, бациллы). Некоторые психрофилы могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бактерии (возбудитель псевдотуберкулеза размножается при темпера­туре 4 "С, а возбудитель чумы - в диапазоне от 0 до 40 °С при оптимуме роста 25 °С). В зависи­мости от температуры культивирования свойс­тва бактерий меняются. Так, Serratia marcescens образует при температуре 20-25 °С большее ко­личество красного пигмента (продигиозана), чем при температуре 37 °С. Возбудитель чумы, выращенный при 25 °С, вирулентнее, чем при 37 "С. Синтез полисахаридов, в том числе кап-сульных, активизируется при более низких тем­пературах культивирования.

Мезофилы растут в диапазоне температур от 10 до 47 °С, оптимум роста около 37 "С. Они включают в себя основную группу патоген­ных и условно-патогенных бактерий.

Термофильные бактерии развиваются при бо­лее высоких температурах (от 40 до 90 °С). На дне океана в горячих сульфидных водах жи­вут бактерии, развивающиеся при температуре 250-300 °С и давлении 265 атм. Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности на­возом и компостом. Поскольку навоз наиболее богат термофилами, их рассматривают как по­казатель загрязненности почвы.

Температурный фактор учитывается при осу­ществлении стерилизации. Вегетативные фор­мы бактерий погибают при температуре 60 °С в течение 20-30 мин., споры - в автоклаве при 120 °С в условиях пара под давлением.

Микроорганизмы хорошо переносят дейс­твие низких температур. Поэтому их можно


долго хранить в замороженном состоянии, в том числе при температуре жидкого азота (-173 °С).

Высушивание. Обезвоживание вызывает на­рушение функций большинства микроорга­низмов. Наиболее чувствительны к высушива­нию возбудители гонореи, менингита, холеры, брюшного тифа, дизентерии и другие пато­генные микроорганизмы. Более устойчивыми являются микроорганизмы, защищенные сли­зью мокроты. Так, бактерии туберкулеза в мок­роте выдерживают высушивание до 90 дней. Устойчивы к высушиванию некоторые кап-суло- и слизеобразующие бактерии. Особой устойчивостью обладают споры бактерий. Например, споры возбудителя сибирской язвы могут сохраняться в почве столетиями.

Для продления жизнеспособности, при консервировании микроорганизмов, ис­пользуют лиофилизацию - высушивание под вакуумом из замороженного состояния. Лиофилизированные культуры микроорга­низмов и иммунобиологические препараты длительно (в течение нескольких лет) сохра­няются, не изменяя своих первоначальных свойств.

Действие излучения. Ионизирующее излу­чение применяют для стерилизации одно­разовой пластиковой микробиологической посуды, питательных сред, перевязочных ма­териалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию ионизирующих излучении, напри­мер Micrococcus radiodurans был выделен из ядерного реактора.

Неионизирующее излучение - ультрафи­олетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение - гамма-излучение радиоактивных веществ и электроны высоких энергий губительно дейс­твуют на микроорганизмы уже через корот­кий промежуток времени.

Ультрафиолетовые лучи, достигающие по­верхности земли, имеют длину волны 290 нм. УФ-лучи применяют для обеззараживания воздуха и различных предметов в больницах, родильных домах, микробиологических лабо­раториях. С этой целью используют бактери­цидные лампы ультрафиолетового излучения с длиной волны 200-400 нм.


4.3.2. Влияние химических веществ

Химические вещества могут оказывать раз­личное действие на микроорганизмы: служить источниками питания; не оказывать какого-либо влияния; стимулировать или подавлять рост, вызывать гибель. Антимикробные хими­ческие вещества используются в качестве ан­тисептических и дезинфицирующих средств, так как обладают бактерицидным, вирули-цидным, фунгицидным действием и т. д.

Химические вещества, используемые для дезинфекции, относятся к различным груп­пам, среди которых наиболее широко пред­ставлены хлор-, йод- и бромсодержащие со­единения и окислители (см. разд. 7.7).

4.3.3. Влияние биологических факторов
Микроорганизмы находятся в различ­
ных взаимоотношениях друг с другом.
Совместное существование двух различных
организмов называется симбиозом (от греч.
simbiosis - совместная жизнь). Различают
несколько вариантов полезных взаимоотно­
шений: метабиоз, мутуализм, комменсализм,
сателлизм.

Метабиоз - взаимоотношение микроор­ганизмов, при котором один из них исполь­зует для своей жизнедеятельности продукты жизнедеятельности другого. Метабиоз ха­рактерен для почвенных нитрифицирую­щих бактерий, использующих для своего метаболизма аммиак - продукт жизнеде­ятельности аммонифицирующих почвен­ных бактерий.

Мутуализм - взаимовыгодные взаимо­отношения разных организмов. Примером мутуалистического симбиоза являются ли­шайники - симбиоз гриба и сине-зеленой водоросли. Получая от клеток водоросли ор­ганические вещества, гриб, в свою очередь, поставляет им минеральные соли и защищает от высыхания.

Комменсализм (от лат. commensalis - со­трапезник) - сожительство особей разных видов, при котором выгоду из симбиоза извлекает один вид, не причиняя другому вреда. Комменсалами являются бактерии - представители нормальной микрофлоры че­ловека


Сателлизм - усиление роста одного ви­да микроорганизма под влиянием другого вида микроорганизма. Например, колонии дрожжей или сарцин, выделяя в питательную среду метаболиты, стимулируют рост вокруг них колоний других микроорганизмов. При совместном росте нескольких видов мик­роорганизмов могут активизироваться их физиологические функции и свойства, что приводит к более быстрому воздействию на субстрат.

Антагонистические взаимоотношения, или антагонистический симбиоз, выражаются в виде неблагоприятного воздействия одного вида микроорганизма на другой, приводяще­го к повреждению и даже гибели последнего. Микроорганизмы-антагонисты распростра­нены в почве, воде и в организме человека и животных. Хорошо известна антагонистичес­кая активность против посторонней и гни­лостной микрофлоры представителей нор­мальной микрофлоры толстого кишечника человека - бифидобактерий, лактобактерий, кишечной палочки и др.

Механизм антагонистических взаимоотно­шений разнообразен. Распространенной фор­мой антагонизма является образование анти­биотиков - специфических продуктов обме­на микроорганизмов, подавляющих развитие микроорганизмов других видов. Существуют и другие проявления антагонизма, например большая скорость размножения, продукция бактериоцинов, в частности колицинов, про­дукция органических кислот и других продук­тов, изменяющих рН среды.

Радиационная микробиология - это отрасль микробиологии, изучающая действие ультрафиолетового и ионизирующего излучений на микроорганизмы. Исследования в области радиационной микробиологии имеют целью: 1) изучение механизмов биологического действия ультрафиолетового и ионизирующих излучений на микроорганизмы; 2) использование радиации как фактора, вызывающего наследственную изменчивость или гибель бактерий.

Микроорганизмы служат широко используемым объектом радиобиологических экспериментов для исследования общих закономерностей действия излучений на клетку. В этой области радиационная микробиология непосредственно смыкается с радиобиологией (см.). Радиационная микробиология решает вместе с тем важные практические задачи, имеющие народнохозяйственное значение, например применение излучений как фактора переделки природы микроорганизмов с целью получения больших выходов биологически ценных веществ (антибиотиков, витаминов, гормонов, аминокислот). На стерилизующем эффекте излучений основан метод «холодной» стерилизации (см.), которая часто имеет преимущества перед стерилизацией теплом или антисептиками, а иногда оказывается единственно возможной.

Действие ионизирующей радиации на наследственность было впервые обнаружено в опытах на микроорганизмах. В 1925 г. Г. А. Надсон и Г. С. Филиппов обнаружили, что под влиянием рентгеновского излучения у микроорганизмов возникают изменения, стойко сохраняющиеся в последующих поколениях (мутации). Это наблюдение положило начало развитию новой отрасли знаний - радиационной генетике (см.). Радиационная микробиология учитывает вскрытые этой наукой закономерности, в частности то, что в определенном диапазоне доз излучения количество мутантных форм увеличивается пропорционально дозе. При помощи ионизирующей радиации естественная частота мутационного процесса может быть увеличена в десятки раз. При этом, конечно, увеличивается выход самых разнообразных наследственно измененных вариантов, затрагивающих различные наследуемые признаки микроорганизмов. Именно поэтому само по себе облучение без последующей селекции не может служить способом получения измененных в желаемом направлении форм микроорганизмов. Облучение лишь обеспечивает появление в микробной популяции большего числа вариантов с наследственными изменениями. Последующая селекция по интересующему признаку позволяет быстрее и с большей вероятностью успеха отобрать необходимый для тех или иных нужд вариант. Так, например, селекция штаммов-продуцентов пенициллина Penicillium chrysogenum с предварительным воздействием рентгеновского и ультрафиолетового излучений позволила американским микробиологам отобрать варианты с продуктивностью, более чем в 100 раз превышающей выработку пенициллина исходным штаммом. Использование мутантов, индуцированных нейтронами, - рентгеновским и ультрафиолетовым излучениями или химическими мутагенами, в 15-30 раз повысило продуктивность штаммов-продуцентов стрептомицина, хлортетрациклина, окситетрациклина. Ведутся работы по радиационной селекции других важных в производственном отношении штаммов микроорганизмов (вакцинных, токсигенных, продуцентов аминокислот и т. п.).

Проблемы радиационной микробиологии, относящиеся к использованию стерилизующего действия радиации, прежде всего связаны с определением доз радиации и условий облучения, обеспечивающих гибель микроорганизмов. Бактерицидное действие рентгеновых лучей было известно уже в конце прошлого столетия. Однако практическое использование ионизирующих излучений для целей стерилизации стало возможным только в последние годы благодаря созданию мощных облучателей, в частности гамма-облучателей, заряженных радиоактивным кобальтом. Современные гамма-облучатели дают возможность обеспечивать огромные дозы радиации в короткое время и в больших объемах облучаемого объекта. Необходимость в создании установок большой мощности для целей стерилизации объясняется относительно высокой радиорезистентностью микроорганизмов. Если для млекопитающих летальные дозы облучения колеблются в пределах 400-1000 рад, то инактивация микробов в зависимости от условий облучения происходит только при использовании доз порядка сотен тысяч или миллионов рад.

Бактерицидное действие ионизирующих излучений зависит от ряда факторов. Высушивание микроорганизмов приводит к повышению радиорезистентности. Аналогичное действие оказывают уменьшение парциального давления кислорода в облучаемом объекте, понижение температуры во время облучения, а также условия, создаваемые после облучения. В случаях облучения микробных культур чувствительность микроорганизмов меняется в зависимости от цикла развития культуры.

Различные микроорганизмы обладают различной радиорезистентностью. Так, например, для достижения стерилизующего эффекта при облучении взвесей неспорообразующих бактерий (Bact. coli, Proteus vulgaris) необходимо облучение в дозах 100 000-500 000 рад. Для инактивации спор спорообразующих микроорганизмов необходимы большие дозы - 1 500 000-2 500 000 рад.- Еще более устойчивы вирусы: стерилизующий эффект наступает только при облучениях в дозах 3 000 000- 5 000 000 рад.