» »

Тригонометрические уравнения. Тригонометрические уравнения — формулы, решения, примеры Решение уравнения ctg x a

15.03.2024

Вы можете заказать подробное решение вашей задачи !!!

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

`\frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

>> Арктангенс и арккотангенс. Решение уравнений tgx = а, ctgx = a

§ 19. Арктангенс и арккотангенс. Решение уравнений tgx = а, ctgx = a

В примере 2 §16 мы не смогли решить три уравнения:

Два из них мы уже решили - первое в § 17 и второе в § 18, для этого нам пришлось ввести понятия арккосинуса и арксинуса. Рассмотрим третье уравнение х = 2.
Графики функций у=tg х и у=2 имеют бесконечно много общих точек, абсциссы всех этих точек имеют вид - абсцисса точки пересечения прямой у = 2 с главной ветвью тангенсоиды (рис. 90). Для числа х1 математики придумали обозначение агсtg 2 (читается «арктангенс двух»). Тогда все корни уравнения х=2 можно описать формулой х=агсtg 2 + пк.
Что же такое агсtg 2? Это - число, тангенс которого равен 2 и которое принадлежит интервалу
Рассмотрим теперь уравнение tg х = -2.
Графики функций имеют бесконечно много общих точек, абсциссы всех этих точек имеют вид абсцисса точки пересечения прямой у = -2 с главной ветвью тангенсоиды. Для числа х 2 математики придумали обозначение агсtg(-2). Тогда все корни уравнения х = -2 можно описать формулой


Что же такое агсtg(-2) ? Это-число, тангенс которого равен -2 и которое принадлежит интервалу . Обратите внимание (см. рис. 90): х 2 = -х 2 . Это значит, что агсtg(-2) = - агсtg 2.
Сформулируем определение арктангенса в общем виде.

Определение 1. агсtg а (арктангенс а) - это такое число из интервала , тангенс которого равен а. Итак,


Теперь мы в состоянии сделать общий вывод о решении уравнения х=а: уравнение х = а имеет решения


Выше мы отметили, что агсtg(-2) = -агсtg 2. Вообще, для любого значения а справедлива формула


Пример 1. Вычислить:

Пример 2. Решить уравнения:

А) Составим формулу решений:

Вычислить значение арктангенса в данном случае мы не можем, поэтому запись решений уравнения оставим в полученном виде.
Ответ:
Пример 3. Решить неравенства:
Неравенство вида можно решать графически, придерживаясь следующего планам
1) построить тангенсоиду у = tg х и прямую у = а;
2) выделить для главной ветви тангейсоиды промежуток оси х, на котором выполняется заданное неравенство;
3) учитывая периодичность функции у = tg х, записать ответ в общем виде.
Применим этот план к решению заданных неравенств.

: а) Построим графики функций у = tgх и у = 1. На главной ветви тангенсоиды они пересекаются в точке


Выделим промежуток оси х, на котором главная ветвь тангенсоиды расположена ниже прямой у = 1, - это интервал
Учитывая периодичность функции у = tgх, делаем вывод, что заданное неравенство выполняется на любом интервале вида:


Объединение всех таких интервалов и представляет собой общее решение заданного неравенства.
Ответ можно записать и по-другому:


б) Построим графики функций у = tg х и у = -2. На главной ветви тангенсоиды (рис. 92) они пересекаются в точке х = агсtg(-2).


Выделим промежуток оси х, на котором главная ветвь тангенсоиды


Рассмотрим уравнение с tg х=а, где а>0. Графики функций у=сtg х и у =а имеют бесконечно много общих точек, абсциссы всех этих точек имеют вид: х = х 1 + пк, где х 1 =агссtg а - абсцисса точки пересечения прямой у=а с главной ветвью тангенсоиды (рис. 93). Значит, агссtg a - это число, котангенс которого равен а и которое принадлежит интервалу (0, п); на этом интервале строится главная ветвь графика функции у =сtg х.


На рис. 93 представлена и графическая иллюстрация решения уравнения с1tg = -а. Графики функций у =сtg х и у = -а имеют бесконечно много общих точек, абсциссы всех этих точек имеют вид х = х 2 + пк, где х 2 = агссtg (- а) - абсцисса точки пересечения прямой у = -а с главной ветвью тангенсоиды. Значит, агссtg(-а) - это число, котангенс которого равен -а и которое принадлежит интервалу (О, п); на этом интервале строится главная ветвь графика функции У =сtg х.

Определение 2. агссtg а (арккотангенс а) - это такое число из интервала (0, п), котангенс которого равен а.
Итак,


Теперь мы в состоянии сделать общий вывод о решении уравнения сtg х=а: уравнение ctg х = а имеет решения:


Обратите внимание (см. рис. 93): х 2 =п-х 1 . Это значит, что

Пример 4. Вычислить:

А) Положим,


Уравнение сtg х=а практически всегда можно преобразовать к виду Исключение составляет уравнение сtg х =0. Но в этом случае, воспользовавшись тем, что можно перейти к
уравнению соs x=0. Таким образом, уравнение вида х=а самостоятельного интереса не представляет.

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?

В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.

Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.

Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.

Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке .

Решение:

I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке (рис. 1).

Так как графики функций имеют две общие точки на промежутке , то уравнение содержит два корня на данном промежутке.

II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку , в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.

III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.

x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);

x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);

x = ± (π – π/3) + 2πk, k – целое число (k € Z);

x = ± 2π/3 + 2πk, k – целое число (k € Z).

Промежутку принадлежат корни 2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.

Ответ: 2 .

В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.

Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].

Решение:

Воспользовавшись формулой корней тригонометрического уравнения, получим:

x + π/4 = arctg 1 + πk, k – целое число (k € Z);

x + π/4 = π/4 + πk, k – целое число (k € Z);

x = πk, k – целое число (k € Z);

Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.

Ответ: 5.

Пример 3. Найти количество корней уравнения cos 2 x + sin x · cos x = 1 на промежутке [-π; π].

Решение:

Так как 1 = sin 2 x + cos 2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:

cos 2 x + sin x · cos x = sin 2 x + cos 2 x;

sin 2 x – sin x · cos x = 0;

sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:

sin x = 0 или sin x – cos x = 0.

Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:

sin x = 0 или sin x / cos x - 1 = 0.

Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:

sin x = 0 или tg x = 1. С помощью формул имеем:

x = πk или x = π/4 + πk, k – целое число (k € Z).

Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.

Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].

Ответ: 5.

Пример 4. Найти сумму корней уравнения tg 2 x + сtg 2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].

Решение:

Перепишем уравнение в следующем виде:

tg 2 x + сtg 2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.

Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:

(tg x + сtg x) 2 = a 2 . Раскроем скобки:

tg 2 x + 2tg x · сtgx + сtg 2 x = a 2 .

Так как tg x · сtgx = 1, то tg 2 x + 2 + сtg 2 x = a 2 , а значит

tg 2 x + сtg 2 x = a 2 – 2.

Теперь исходное уравнение имеет вид:

a 2 – 2 + 3a + 4 = 0;

a 2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.

Сделаем обратную замену, имеем:

tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.

tg x + 1/tgx = -1 или tg x + 1/tgx = -2.

По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:

tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:

-π/4 + (-π/4 + π) = -π/2 + π = π/2.

Ответ: π/2.

Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].

Решение:

Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда

sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид

2sin 2x · cos x = sin 2x;

2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки

sin 2x(2cos x – 1) = 0. Решим полученное уравнение:

sin 2x = 0 или 2cos x – 1 = 0;

sin 2x = 0 или cos x = 1/2;

2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).

Таким образом, имеем корни

x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).

Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:

(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.

Ответ: -π/6.

Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].

Решение:

Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:

x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).

Таким образом, заданному промежутку принадлежат три корня уравнения.

Ответ: 3.

Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На этом уроке мы продолжим изучение арктангенса и решение уравнений вида tg x = a для любого а. В начале урока решим уравнение с табличным значением и проиллюстрируем решение на графике, а потом и на круге. Далее решим уравнение tgx = aв общем виде и выведем общую формулу ответа. Проиллюстрируем вычисления на графике и на круге и рассмотрим различные формы ответа. В конце урока решим несколько задач с иллюстрацией решений на графике и на круге.

Тема: Тригонометрические уравнения

Урок: Арктангенс и решение уравнения tgx=a (продолжение)

1. Тема урока, введение

На этом уроке мы рассмотрим решение уравнения для любого действительного

2. Решение уравнения tgx=√3

Задача 1. Решить уравнение

Найдем решение с помощью графиков функций (рис. 1).

Рассмотрим промежуток На этом промежутке функция монотонна, значит, достигается только при одном значении функции.

Ответ:

Решим это же уравнение с помощью числовой окружности (рис. 2).

Ответ:

3. Решение уравнения tgx=a в общем виде

Решим уравнение в общем виде (рис. 3).

На промежутке уравнение имеет единственное решение

Наименьший положительный период

Проиллюстрируем на числовой окружности (рис. 4).

4. Решение задач

Задача 2. Решить уравнение

Произведем замену переменной

Задача 3. Решить систему:

Решение (рис. 5):

В точке значение поэтому решением системы является только точка

Ответ:

Задача 4. Решить уравнение

Решим методом замены переменной:

Задача 5. Найти число решений уравнения на промежутке

Решим задачу с помощью графика (рис. 6).

Уравнение имеет три решения на заданном промежутке.

Проиллюстрируем на числовой окружности (рис. 7), хотя это не так наглядно, как на графике.

Ответ: Три решения.

5. Вывод, заключение

Мы решали уравнение для любого действительного используя понятие арктангенс. На следующем уроке мы познакомимся с понятием арккотангенс.

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

3. Виленкин Н. Я., Ивашев-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М. Л., Мошкович М. М., Шварцбурд С. И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М. И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебраический тренажер.-К.: А. С.К., 1997.

7. Саакян С. М., Гольдман А. М., Денисов Д. В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А. П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

№№ 22.18, 22.21.

Дополнительные веб-ресурсы

1. Математика.

2. Интернет-портал Problems. ru .

3. Образовательный портал для подготовки к экзаменам.

Волновое уравнение, дифференциальное уравнение с частными производными, описывающее процесс распространения возмущений в некоторой среде Тихонов А. Н. и Самарский А. А., Уравнения математической физики, 3 изд., М., 1977. - с. 155....

Классификации гиперболических дифференциальных уравнений в частных производных

Уравнение теплопроводности - дифференциальное уравнение с частными производными параболического типа, описывающее процесс распространения теплоты в сплошной среде (газе...

Математические методы, применяемые в теории систем массового обслуживания

Вероятности состояний системы можно найти из системы дифференциальных уравнений Колмогорова, которые составлены по следующему правилу: В левой части каждого из них стоит производная вероятности i-го состояния...

Нестационарное уравнение Риккати

1.Общее уравнение Риккати имеет вид: , (1.1) где P, Q, R-непрерывные функции от xпри изменении x в интервале Уравнение (1.1) заключает в себе как частные случаи уже рассмотренные нами уравнения: при получаем линейное уравнение, при -уравнение Бернулли...

Основы научного исследования и планирование экспериментов на транспорте

Получим функциональную зависимость Y = f(X) (уравнение регрессии) с помощью метода наименьших квадратов (МНК). В качестве аппроксимирующих функций использовать линейную (Y = a0 + a1X) и квадратичную зависимости (Y = a0 + a1X + a2X2). Посредством МНК значения a0...

Поместим полюс полярной системы координат в начало прямоугольной системы координат, полярную ось совместим с положительной полуосью абсцисс (рис.3). Рис. 3 Возьмем уравнение прямой в нормальном виде: (3.1) - длина перпендикуляра...

Полярная система координат на плоскости

Составим уравнение в полярных координатах окружности, проходящей через полюс, с центром на полярной оси и радиусом R. Из прямоугольного треугольника OAA получаем OA= OA (рис. 4)...

Понятия выборочной теории. Ряды распределения. Корреляционный и регрессионный анализ

Изучить: а) понятие парной линейной регрессии; б) составление системы нормальных уравнений; в) свойства оценок по методу наименьших квадратов; г) методику нахождения уравнения линейной регрессии. Предположим...

Построение решений дифференциальных уравнений в виде степенных рядов

В качестве примера приложения построенной теории рассмотрим уравнение Бесселя: (6.1) Где. Особая точка z =0 является регулярной. Других особенностей в конечной части плоскости нет. В уравнении (6.1) , поэтому определяющее уравнение имеет вид, Т.е...

Решение матричных уравнений

Матричное уравнение ХА=В также можно решить двумя способами: 1. Вычисляется обратная матрица любым из известных способов. Тогда решение матричного уравнения будет иметь вид: 2...

Решение матричных уравнений

Для решения уравнений вида АХ=ХВ, АХ+ХВ=С описанные выше методы не подходят. Они не подходят также для решения уравнений, в которых хотя бы один из сомножителей при неизвестной матрице Х является вырожденной матрицей...

Решение матричных уравнений

Уравнения вида АХ=ХА решаются так же, как и в предыдущем случае, то есть поэлементно. Решение здесь сводится к нахождению перестановочной матрицы. Подробнее рассмотрим на примере. Пример. Найдите все матрицы...

Стационарное функционирование сети массового обслуживания с ромбовидным контуром

Из состояния может перейти в одно из следующих состояний: - за счет поступления заявки в очередь первого узла с интенсивностью; - за счет поступления из первого узла обработанной в нем заявки в очередь третьего узла с интенсивностью при...

Тригонометрические функции

Арктангенсом числа называется такое число, синус которого равен а: , если и. Все корни уравнения можно находить по формуле:...

Численные методы решения математических задач