» »

Делаем самодельное зарядное устройство для пальчиковых аккумуляторов. Зарядное устройство для кроны своими руками Зарядка для аккумулятора 6f22 крона самодельная

28.08.2023

На сегодняшний момент, достаточно много различных устройств, работающих на батарейках. И тем досаднее, когда в самый неподходящий момент наше устройство перестает работать, потому что батарейки попросту сели, а их заряда недостаточно для нормального функционирования прибора.

Приобретать каждый раз новые батарейки довольно затратно, а вот попытаться изготовить своими руками самодельное устройство для зарядки пальчиковых аккумуляторов вполне себе стоит.

Многие умельцы отмечают, что предпочтительнее заряжать подобные аккумуляторы (AA или AAA) с помощью постоянного тока, потому что такой режим наиболее выгоден в плане безопасности для самих батареек . Вообще, переданная сила заряда от сети составляет порядка 1,2-1,6 от значения емкости самого аккумулятора. К примеру, никель-кадмиевый аккумулятор, емкость которого будет составлять 1А/ч, будет заряжаться током емкостью 1,6 А/ч. При этом, чем меньше показатель данной мощности, тем лучше для процесса зарядки.

В современном мире существует достаточно много бытовых приборов, оснащенных специальным временным таймером, отсчитывающим определенный промежуток, затем сигнализируя об его окончании. При изготовлении своими руками устройства для зарядки пальчиковых аккумуляторов, можно также применить данную технологию , которая уведомит вас об окончании процесса заряда аккумуляторов.

AAпредставляет собой прибор, генерирующий постоянный ток, заряжая мощностью до 3 А/ч. При изготовлении использовалась самая обычная, даже классическая схема, которую вы видите ниже. Основой, в данном случае, является транзистор VT1.

Напряжение на данном транзисторе обозначено с помощью светодиода красного цвета VD5, выполняющий роль индикатора, при включении прибора в сеть. Резистор R1 задает определенную мощность токов, проходящих через данный светодиод, в результате чего колеблется напряжение в нем. Значение коллекторного тока формируется сопротивлением от R2 до R5, которые включены в VT2 — так называемую «эмиттерную цепь». При этом, меняя значения сопротивления, можно контролировать степень зарядки. R2 постоянно включен в VT1, задавая ток постоянного действия с минимальным значением — 70 мА. Чтобы повысить мощность заряда, необходимо подключать остальные резисторы, т.е. R3,R4 и R5.

Читайте так же: Обозреваем шкафы управления задвижкой

Стоит отметить, что зарядное устройство функционирует только тогда, когда осуществлено подключение аккумуляторов .

После включения прибора в сеть, на резисторе R2 появляется определенное напряжение, передающееся на транзистор VT2. Затем, ток протекает дальше, в результате чего начинает интенсивно гореть светодиод VD7.

Рассказ про самодельное устройство

Зарядка от USB-порта

Можно изготовить зарядное устройство для никель-кадмиевых батарей на основе обычного USB-порта . При этом, заряжаться они будут током емкостью примерно 100 мА. Схема, в таком случае, будет следующей:

На сегодняшний момент, существует достаточно много различных зарядных устройств, продающихся в магазинах, но их стоимость может быть достаточно высокой. Учитывая, что главный смысл различных самоделок — это именно экономия денежных средств, то самостоятельная сборка еще более целесообразна в данном случае.

Данную схему можно доработать, добавив дополнительную цепь для зарядки пары аккумуляторов AA. Вот, что в итоге получилось:

Чтобы было более наглядно, вот те комплектующие, которые использовались в процессе сборки:

Понятно, что без элементарного инструментария нам не обойтись, поэтому перед началом сборки необходимо удостовериться, что у вас в наличии есть все необходимое:

  • паяльник;
  • припой;
  • флюс;
  • тестер;
  • пинцет;
  • различные отвертки и нож.

Читайте так же: Обзор зарядных устройств для пальчиковых аккумуляторов

Интересный материал про изготовление своими руками, рекомендуем к просмотру

Тестер необходим для того, чтобы проверить работоспособность наши радиодетали. Для этого нужно сравнить их сопротивление, после чего сверить с номинальным значением.

Для сборки нам также понадобится корпус и батарейный отсек. Последний можно взять из детского симулятора Тетрис, а корпус может быть изготовлен из обычного пластмассового футляра (6,5см/4,5см/2см).

Крепим отсек для батарей на корпусе, используя шурупы. В качестве основы для схемы прекрасно подойдет плата от приставки Денди, которую нужно выпилить. Удаляем все ненужные компоненты, оставляя только гнездо питания. Следующим шагом будет пайка всех деталей, основываясь на нашей схеме.

Шнур питания для устройства можно взять обычный шнур от компьютерной мыши, обладающий входом USB, а также часть питающего провода со штекером. При пайке нужно строго соблюдать полярность, т.е. припаивать плюс к плюсу и т.д. Подключаем шнур к USB, проверяя напряжение, которое подается на штекер. Тестер должен показывать 5В.

Для питания малогабаритной радиоэлектронной аппаратуры сегодня широко используют Ni-Cd и Ni-MH аккумуляторы типоразмеров АА и AAA. Менее распространены аккумуляторные батареи, применяемые взамен гальванических напряжением 9 В ("Крона", "Корунд"): отечественные Ni-Cd "Ника", 7Д-0,125 и зарубежные Ni-MH типоразмера 6F22 разных изготовителей (к этому же типоразмеру относятся батареи GP17R8H, GP17R9H и др. компании GP). Емкость названных батарей - 0,1...0,25 Ач, номинальное напряжение - 8,4...9,6 В, и для их зарядки требуются специализированные зарядные устройства, которые в продаже встречаются крайне редко (обычно возможность зарядки таких батарей имеется только в довольно дорогих универсальных устройствах). В публикуемой ниже статье описаны две приставки, позволяющие заряжать девятивольтные батареи от имеющегося источника питания. Изготовить самостоятельно зарядное устройство (ЗУ) для аккумуляторных батарей типоразмера 6F22 можно на основе выпрямителя с гасящим конденсатором, но из-за гальванической связи с сетью оно может быть небезопасным в эксплуатации. ЗУ с понижающим трансформатором безопасно, но, во-первых, подходящего трансформатора может не оказаться ни дома, ни в магазине, и его придется наматывать самому, а во-вторых, габариты такого устройства будут больше. Возможный выход из положения - изготовить зарядную приставку к уже имеющемуся источнику, например, к лабораторному блоку питания с выходным напряжением 12 В или к ЗУ от сотового телефона (5 В). Схема зарядной приставки к стабилизированному источнику питания с выходным напряжением 12 В показана на рис. 1.

Зарядный ток батареи аккумуляторов, подключенной к разъему Х1, устанавливают подстроечным резистором R8. Транзисторы VT1, VT2 и резисторы R4 - R7 образуют узел контроля тока зарядки. Диод VD1 предотвращает разрядку батареи через приставку и источник питания в случае, если последний будет отключен от сети или в ней пропадет напряжение. После подключения к приставке через заряжаемую батарею течет ток I зар1 , определяемый ее собственным напряжением UБ, напряжением источника питания Uпит сопротивлением резистора R3 и введенной части R8 (влияние шунтирующих его резисторов R6 и R7 можно не учитывать) и, наконец, падением напряжения UVD1 на диоде VD1: I зар1 = (U пит – U Б – U VD1)/(R3+R8). При разряженной до 7 В батарее этот ток не превышает 2,5 мА, поэтому падение напряжения на резисторе R8 недостаточно для открывания транзисторов VT1, VT2, светодиод HL1 не светит и транзистор VT3 закрыт. При нажатии на кнопку SB1 ("Пуск") транзистор VT3 открывается, и зарядный ток увеличивается до значения I зар2 = (U пит – U Б – U VD1 – U VT3)/R8, где U VT3 - падение напряжения на участке эмиттер-коллектор транзистора VT3. При этом напряжение на движке подстроечного резистора R6 возрастает настолько, что транзистор VT1 открывается, поэтому после отпускания кнопки оба названных транзистора остаются открытыми и начинается зарядка аккумуляторной батареи током 15...50 мА (в зависимости от введенного сопротивления подстроенного резистора R8). Светодиод HL1 индицирует ход процесса. По мере зарядки напряжение батареи повышается, а зарядный ток и падение напряжения на резистор R8 уменьшаются. Когда напряжение батареи достигает примерно 10,5 В, транзистор VT1, а вслед за ним и VT3 закрываются, светодиод HL1 гаснет и зарядка батареи {прекращается. С этого момента через нее течет только незначительный ток Iзар3 (около 1 мА), определяемый в основном сопротивлением резистора R3. Если из-за неисправности батареи или замыкания выхода приставки ток в зарядной цепи превысит 50...60 мА, откроется транзистор VT2, транзисторы VT1, VT3 начнут закрываться и в результате выходной ток будет ограничен. Схема приставки к ЗУ сотового телефона показана на рис. 2.

Это устройство представляет собой регулируемый повышающий преобразователь напряжения. На инверторах DD1.1-DD1.3 собран задающий генератор импульсов с частотой следования около 30 кГц, а на DD1.4-DD1.6 и транзисторе VT1 - формирователь управляющих импульсов для транзистора VT2, который работает в ключевом режиме. Импульсное напряжение, формируемое на его коллекторе, выпрямляется диодом VD1, конденсаторы С6, С7 - сглаживающие. После подключения к разъему Х1 аккумуляторная батарея начинает заряжаться через светодиод HL2 (он зажигается) и резистор R7. Если зарядный ток окажется больше 20.. .25 мА, падение напряжения на этом резисторе откроет транзистор VT1, он зашунтирует резистор R4 и длительность управляющих импульсов уменьшится, поэтому уменьшатся выпрямленное напряжение и зарядный ток. Так обеспечивается его стабилизация в процессе зарядки. При разряженной батарее транзистор VT3 закрыт и светодиод HL1 не светит. По мере ее зарядки ток через последовательную цепь VD2R9 увеличивается, падение напряжения на подстроечном резисторе R9 повышается и наступает момент, когда транзистор VT3 начинает открываться. В результате часть выходного тока выпрямителя начинает протекать через этот транзистор и светодиод HL1, а ток зарядки уменьшаться. Иными словами, яркость свечения светодиода HL1 постепенно возрастает, а светодиода HL2 - снижается. Последний продолжает слабо светиться и по окончании зарядки, так как через него протекает ток стабилитрона VD2 и небольшой (около 1 мА) ток зарядки, безопасный для батареи (она может оставаться подключенной к приставке неограниченное время). Чертеж печатной платы первой приставки изображен на рис. 3, а второй - на рис. 4.

На них монтируют все детали, кроме разъемов для подключения аккумуляторной батареи и источника питания. Постоянные резисторы - Р1 -4, С2-23, подстроечные - СПЗ-19а, оксидные конденсаторы - импортные (например, серии ТК фирмы Jamicon), остальные - К10-17. Транзисторы структуры n-p-n могут быть серий КТ342, КТ3102, а p-n-p - серии КТ3107. Светодиоды - любые с прямым напряжением 1,8...2,5 В и максимально допустимым током до 25 мА. Возможная замена диода 1N5819 (см. рис. 1) - Д310, Д311, диода КД522Б (см. рис. 2) - КД521А, 1N5819, стабилитрона КС162А - КС175А, КС182А. Дроссель L1 (см. рис. 2) - ДМ-0,2, кнопка SB1 (см. рис. 1) - ПКн-159. Если режим ограничения выходного тока в первой приставке не нужен, элементы VT2, R5, R7 не устанавливают. Для подсоединения к приставкам заряжаемой батареи используют двухконтактные разъемы (аналогичные колодкам, применяемым в батареях этого типа), исключающие неправильное подключение, а для соединения с источником питания и ЗУ сотового телефона - соответствующие разъемы. Автор применял ЗУ с выходным напряжением 5 В, которое снабжено гнездом USB-A. Для стыковки с ним зарядная приставка была оборудована кабелем с вилкой USB-A, что позволило заряжать аккумуляторную батарею и от компьютера. Внешний вид смонтированных приставок показан на рис. 5 и 6.

Налаживают первую приставку в такой последовательности. Установив движки подстроечных резисторов R6 - R8 в нижнее (по схеме) положение, подключают к разъему Х1 разряженную батарею и соединенный последовательно с ней миллиамперметр с пределом измерения 100 мА. Включают источник питания и, нажав на кнопку SB1, резистором R8 устанавливают максимальный (начальный) ток зарядки (не более 50... 60 мА). Затем батарею заменяют постоянным резистором сопротивлением 100 Ом и, перемещая движок резистора R7, увеличивают ток на 10 мА по отношению к установленному ранее. Далее подключают свежезаряженную батарею (без миллиамперметра) и, медленно поворачивая движок подстроечного резистора R6, добиваются погасания светодиода HL1. После этого проводят несколько контрольных циклов зарядки и при необходимости повторяют налаживание.

Вторую приставку налаживают следующим образом. Установив движок резистора R9 в нижнее (по схеме) положение, временно замыкают конденсатор С5 проволочной перемычкой. Затем, как и при налаживании первой приставки, к выходу подключают соединенные последовательно разряженную батарею и миллиамперметр. Включив источник питания, подстроенным резистором R2 устанавливают в зарядной цепи ток, превышающий на 10...20 % желаемый ток зарядки. После удаления перемычки с конденсатора С5 он должен уменьшиться. Требуемое значение устанавливают подборкой резистора R7 (I зар ~ 0.6/R7). Затем подключают полностью заряженную батарею и резистором R9 устанавливают ток зарядки около 0,5 мА. При желании индикацию окончания зарядки батареи в этом ЗУ можно сделать более четкой. Для этого вместо транзистора VT3 и стабилитрона VD2 устанавливают параллельный стабилизатор напряжения KP142ЕН19 (рис. 7). Теперь через светодиод HL2 будет протекать только ток зарядки. Следует учесть, что номинальное напряжение некоторых аккумуляторных батарей этого типоразмера, в частности GP17R9H, - 9,6 В, и в заряженном состоянии напряжение на ней достигает 12 В, поэтому для ее зарядки с помощью первой приставки необходим источник питания напряжением 13,5 В.

Радио №10, 2008г.


Батареи типоразмера 6F22, как аккумуляторные, так и состоящие из гальванических элементов, пока ещё достаточно широко применяются для питания различной малогабаритной маломощной радиоаппаратуры. Если "свежей" батареи хватает ненадолго, предпочтительно применить аккумуляторный вариант, но тогда возникает проблема с его зарядкой.

В настоящее время широко распространены сетевые (в основном зарядные устройства для сотовых телефонов) и автономные или аккумуляторные (power bank) источники питания с выходным напряжением 5 В и выходным USB-разъёмом. Поскольку у аккумуляторных батарей типоразмера 6F22 номинальное напряжение около 8,7 В, заряжать их от указанных выше источников питания без повышающего преобразователя напряжения невозможно. Предлагаемое устройство представляет собой такой преобразователь с контролем тока зарядки.

Схема устройства показана на рис. 1. Повышающий преобразователь собран на микросхеме DA1 и дросселе L1. Импульсы напряжения, формирующиеся на автотрансформаторе, выпрямляет диод VD1, а пульсации выпрямленного напряжения сглаживает конденсатор С3. Выходное напряжение такого преобразователя зависит от напряжения на управляющем входе OUT (вывод 2) микросхемы.

Рис. 1. Схема зарядного устройства

В исходном состоянии микросхема DA1 поддерживает на выходе (разъём Х2) напряжение, соответствующее максимальному для аккумуляторной батареи 6F22. По разным источникам - это около 9,8 В. Поскольку ток через резистор R3 не превышает 1 мА, напряжения на нём недостаточно для открывания транзистора VT1, поэтому светодиод HL2 погашен.

При подключении разряженной аккумуляторной батареи напряжение на движке резистора R2 уменьшится, поэтому выходное напряжение преобразователя станет увеличиваться. Поскольку ток зарядки протекает через батарею и резистор R3, напряжение на нём увеличится, транзистор VT1 откроется, светодиод HL2 включится и напряжение на входе OUT микросхемы DA1 увеличится. В результате выходное напряжение преобразователя уменьшится он перейдёт в режим стабилизации тока, значение которого задают подборкой резистора R3.

По мере зарядки аккумуляторной батареи напряжение на ней станет расти, а ток зарядки уменьшаться. Транзистор будет постепенно закрываться, яркость свечения светодиода HL2 уменьшаться, а выходное напряжение преобразователя расти. В какой-то момент времени транзистор закроется, светодиод HL2 погаснет, но зарядка аккумуляторной батареи продолжится с постепенно уменьшающимся током. Напряжение же на ней не превысит заранее установленного значения.

В этом устройстве ток зарядки на втором этапе зависит от напряжения аккумуляторной батареи, и чем ближе оно к максимальному, тем меньше ток, который уменьшается практически до нуля. Таким образом, в этом устройстве реализована зарядка по закону, близкому к закону Вудбриджа, в соответствии с которым в начале зарядки разряженного аккумулятора ток может в несколько раз превышать рекомендуемый (обычно 0,1...0,2 от ёмкости аккумулятора) для зарядки стабильным током. Такой способ зарядки позволяет зарядить батарею за несколько часов до ёмкости 70...80 %, а последующая дозарядка осуществляется уменьшающимся током без ущерба для неё, что может благоприятно сказаться на общей продолжительности её срока службы.

Чтобы не усложнять конструкции, индикатора окончания зарядки в нём нет. Светодиод HL2 индицирует переход устройства из режима стабилизации тока в режим стабилизации выходного напряжения. Светодиод HL1 - индикатор входного напряжения 5 В.

В устройстве применены постоянные резисторы Р1-4, МЛТ, С2-23, подстроечный - СП3-19, конденсаторы - К50-35 или импортные. Диод 1N4148 можно заменить любым диодом из серий КД510, КД521, КД522 или диодом Шотки серии 1N581X. Замена транзистора КТ3107Б - любой транзистор из серий КТ3107, PN2907. Светодиод HL1 может быть жёлтого, зёленого, синего или белого свечения повышенной яркости с диаметром корпуса 3 мм. Светодиод HL2 - аналогичный, но красного свечения. Дроссель намотан на кольцевом ферри-товом магнитопроводе от KJ1J1, его диаметр - 9,5 мм, высота - 3,3 мм. Обмотка содержит 20...22 витка провода ПЭВ-2 0,4 с отводом от 6-го витка. Разъём Х1 - обычный USB, Х2 - колодка от батареи "Крона".

Рис. 2. Чертёж печатной платы прибора

Большинство элементов установлены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 1...1,5 мм. Её чертёж показан на рис. 2. Микросхема установлена со стороны печатных проводников. В качестве корпуса использован корпус от батареи "Крона", и размеры платы рассчитаны для этого случая. Внешний вид смонтированной платы показан на рис. 3. Сначала в корпус вставляют разъём Х2 и крепят его с помощью клея, например эпоксидного. Затем вставляют плату и закрепляют с помощью термоклея, предварительно под неё со стороны печатных проводников подкладывают изолирующую прокладку из тонкого пластика размерами с плату. Сзади установлена штатная заглушка от "Кроны". В ней сделаны отверстия для светодиодов и кабеля питания. Если заглушка не пластмассовая, а металлическая, её надо изолировать от радиоэлементов на плате. Внешний вид устройства показан на рис. 4.

Рис. 3. Внешний вид смонтированной платы

Рис. 4. Внешний вид устройства

Налаживание начинают с установки движка подстроечного резистора R2 в среднее по схеме положение. Затем от лабораторного источника питания подают напряжение 5 В и с помощью вольтметра контролируют напряжение на выходе (разъёме Х2). Движком резистора R2 устанавливают его требуемое значение. Подключив разряженную до 7 В аккумуляторную батарею, подборкой резистора R3 устанавливают максимальный ток зарядки.

В случае возникновения короткого замыкания на выходе резистор R3 выполняет функцию ограничителя тока, поэтому на плате предусмотрена возможность установки двух резисторов R3" и R3"" мощностью по 0,5 Вт. Если блок питания 5 В имеет защиту от короткого замыкания или ограничение по току, мощность резистора R3 может быть уменьшена до 0,25.0,5 Вт.

Это устройство можно применить в качестве USB-источника питания с выходным напряжением 9 В, как замена батарее "Крона". Для этого взамен резистора R3 устанавливают проволочную перемычку, а элементы R4, VT1 и HL2 на плату не устанавливают. Резистором R2 устанавливают требуемое выходное напряжение. Но тогда надо обязательно поменять полярность напряжения на разъёме Х2. При этом максимальный выходной ток такого преобразователя - не более 50 мА. Но следует учесть, что при питании радиоприёмника преобразователь может создавать помехи приёму. Для их подавления в обе линии питания, между платой и разъёмом Х2, надо установить дроссели индуктивностью 100...500 мкГн, а непосредственно к выводам этого разъёма аккуратно припаять керамический конденсатор ёмкостью 100 нФ.

Предлагаемое вниманию читателей электронное устройство, как и описанное ранее в "Радио" (1990, №5, с.39), предназначено для зарядки аккумуляторных батарей типа 7Д-0,125 (6F22). Однако оно более надежно и точно в работе, так как в нем вместо компаратора на логическом элементе использован операционный усилитель. Именно поэтому удалось добиться лучшей стабильности.

Устройство ведет постоянный контроль за степенью заряженности батареи и по достижении определенного уровня напряжения зарядка ее автоматически прекращается. Если после этого батарею не отключить от зарядного устройства, то напряжение на ней начинает уменьшаться, и как только оно снизится на несколько процентов, зарядка возобновляется. Таким образом, автомат позволяет постоянно поддерживать аккумуляторную батарею в заряженном состоянии, независимо от длительности (дни, недели) подключения ее к зарядному устройству. Схема автомата приведена на рис.1 . Конденсаторы С1 и С2 гасят избыточное напряжение сети и обеспечивают зарядный ток в пределах 12...15 мА. Необходимое переменное напряжение ограничивается стабилитроном VD1 и выпрямляется диодом VD2.

На операционном усилителе (ОУ) DА1 собран компаратор напряжения с небольшим гистерезисом. На его неинвертирующий вход (вывод 3) через делитель R8R9 подается образцовое напряжение, которое снимается с параметрического стабилизатора R10VD3, а на инвертирующий вход (вывод 2) через делитель R6R7 - напряжение заряжаемой аккумуляторной батареи GB1. Транзисторы VT1 и VГ2, работающие в ключевом режиме, управляют процессом зарядки батареи. Светодиод HLl- индикатор процесса зарядки.

Стабилизатор R10VD3 и ОУ питаются током заряжаемой батареи (2...3 мА), что позволило без ущерба ее электроемкости значительно упростить устройство - отпадает необходимость в дополнительном источнике питания.

Работает автомат следующим образом. Пока батарея еще разряжена, напряжение на не инвертирующем входе ОУ оказывается больше, чем на входе инвертирующем. В это время напряжение на выходе ОУ почти равно напряжению батареи, поэтому транзисторы VT2 и VT3 находятся в открытом состоянии. При положительной полуволне переменного напряжения на верхнем (по схеме) сетевом проводе диод VD2 открывается и батарея заряжается. Одновременно открывается транзистор VT1, в результате чего напряжение на инвертирующем входе ОУ снижается до 1...2 В. Поэтому во время этого полупериода сетевого напряжения компаратор не реагирует на уровень напряжения батареи аккумуляторов. При отрицательной полуволне напряжения сети диод VD2 закрывается и зарядный ток батареи прерывается. В этот момент заряжаются конденсаторы С1 и С2 через прямосмещенный стабилитрон VD1.

Небольшое отрицательное напряжение (примерно -1 В), которое на стабилитроне падает, закрывает транзистор VТ1, и на инвертирующий вход ОУ поступает напряжение с делителя R6R7. Если это напряжение окажется достаточным для переключения компаратора, то напряжение на его выходе скачком уменьшится до 0,5...1 В, отчего транзисторы VТ2, VТЗ закроются и прекратят зарядку батареи. Если же батарея еще не заряжена, то компаратор не сработает и процесс зарядки будет продолжаться.

Во время зарядки светодиод вспыхивает с частотой 50 Гц, что зрительно воспринимается горящим постоянно. Такой процесс продолжается до тех пор, пока напряжение на заряжаемой аккумуляторной батарее не достигнет 9,45...9,5 В. Как только это произойдет, компаратор сработает, зарядка батареи прекратится и светодиод погаснет. Благодаря цепи делителя R9R8 компаратор работает с гистерезисом по напряжению 0,1...0,15 В, поэтому обратное его переключение происходит при напряжении батареи 9,3...9,4 В. Это означает, что после окончания зарядки батарея начнет медленно разряжаться. Через несколько минут батарея разрядится до указанного напряжения, компаратор переключится в первоначальное состояние и возобновит процесс ее зарядки.

Такое схемотехническое построение автомата исключает ложное прекращение процесса зарядки из-за сетевых помех, так как в нем нет элемента памяти, и не допускает разрядки батареи до напряжения 7 В, как это наблюдается в устройстве, описанном в статье «Автоматическое зарядное устройство аккумуляторной батареи» ("Радио", 1991, №12, с.28). По истечении некоторого времени (12...15 ч) батарея будет поддерживаться в заряженном состоянии и, в принципе, независимо от того, горит светодиод или нет, ее можно отключить от автомата и бьть уверенным, что она заряжена до нормы. И, конечно, ничего опасного не произойдет, если батарея окажется подключенной к зарядному устройству несколько дней и более.

Размещение и монтаж деталей автомата на печатной плате иллюстрирует рис.2 . Транзисторы VТl и VТ2 могут быть КТ312А - КТ312В, КТ315А - КТ315И, KT3102A - КТ3102Е; VТЗ - КП302Б - КП302Г с начальным током стока не менее 25 мА. ОУ ОА1 - К140УД7; стабилитрон VDЗ - КС156А, КС168А; диод VD2 - любой маломощный выпрямительный. Стабилитрон КС518А (VD1) можно заменить двумя включенными последовательно стабилитронами Д814А - Д814Д. Светодиод (HL1) может бьть как красного, так и зеленого цвета свечения с рабочим током 10...20 мА. Все постоянные резисторы - МЛТ или ВС, подстроечный R6 - СП3-3; конденсаторы - МБМ, К73, БМ.


В распоряжении радиолюбителя может не оказаться подходящего полевого транзистора. В таком случае его придется заменить узлом, смонтированным по схеме, приведенной на рис.3 . Налаживание автомата сводится к установке порога срабатывания компаратора. Для этого движок резистора R6 устанавливают в крайнее верхнее (по схеме) положение, а к разъему Х1 подключают свежезаряженную аккумуляторную батарею напряжением 9,5 В. Медленно перемещая движок резистора в сторону нижнего положения, добиваются погасания светодиода. Через некоторое время, когда батарея слегка разрядится, светодиод должен снова загореться, что укажет на возобновление процесса зарядки. В этот момент надо отключить батарею и тут же измерить ее напряжение - оно должно быть не менее 9,2 В. После этого батарею снова подключают к автомату, а когда светодиод погаснет, то отключают и еще раз измеряют ее напряжение - теперь оно должно быть 9,4...9,5 В.


Плату налаженного автомата размещают в корпусе из изоляционного материала. Заряжаемую батарею подключают к нему с помощью надежно изолированной колодки возможно короткими проводниками.

Радио №12, 1994 г.


Лет пять назад мной был приобретен фотоаппарат Nikon Coolpix L320, который работает на четырех батарейках/аккумуляторах типа АА. По началу использовал только алкалайновые батарейки, но их хватало на пару десятков снимков, а дальше фотоаппарат отказывался работать, поэтому в целях экономии и стабильной работы, решился на покупку качественных Ni-Mh аккумуляторов Fujitsu 2000 mAh HR-3UTC EX без эффекта памяти с технологией LSD (низкий саморазряд) и высокой токоотдачей, что идеально подходит для зарядки фотовспышки.

Для зарядки аккумуляторов поначалу использовал зарядное устройство ATABA AT-308, которое покупалось очень давно, но качество зарядного устройства меня не устраивало.


Принцип заряда сводился к ограничению зарядного тока от трансформаторного источника питания посредством токоограничивающих резисторов, кроме того заявленный ток заряда 150 мА не соответствовал действительности и был гораздо меньше, такая же ситуация была и при зарядке 6F22 («Крона») ток заряда составлял менее 10 мА.



Решено было сделать собственное зарядное устройство в корпусе АTABA AT-308, но с другой принципиальной схемой, которая включала бы в себя контроль заряда аккумулятора и визуальный контроль окончания заряда

Материалы:
микросхема LM324;
микросхема MC34063;
микросхема TL431 (регулируемый прецизионный стабилитрон);
микросхема LM317;
транзистор КТ815 (NPN транзистор);
светодиоды 5 шт;
резистор 0,5 Ом;
резистор 10 Ом 2Вт;
резистор 27 Ом;
резистор 39-51Ом;
резистор 180 Ом;
резистор 470 Ом;
резистор 750 Ом;
резистор 1 кОм;
резистор 2 кОм;
резистор 3 кОм;
резистор 8,2 кОм;
резистор 10 кОм;
резистор 36 кОм;
диод 1N4007;
диод Шотки 1N5819;
дроссель;
конденсатор не полярный 0,1 мкФ;
конденсатор не полярный 470 пФ;
конденсатор оксидный 100 мкФ;
конденсатор оксидный 470 мкФ.

Инструменты:
паяльник, припой, флюс;
электродрель;
лобзик;
сверла.

Пошаговая инструкция изготовления зарядного устройства для Ni-Cd и Ni-Mh аккумуляторов

Сердцем зарядного устройства является микросхема LM324, в корпусе которой расположено четыре независимых друг от друга операционных усилителя.


Схема рассчитана на зарядку одного аккумулятора, поэтому я буду собирать устройство на четыре канала на микросхеме LM324, при этом цепочка R5-R6-R7-R8-TL431 будет общей для всех каналов. Инверсные входы LM324 объединяются и соединяются с R5. Напряжение на выходе (на аккумуляторах при зарядке) установлено 1,46 В с помощью регулируемого прецизионного стабилитрона TL431 и резисторов R6 и R7.

Ток заряда устанавливается резистором R3 и при значении 5 Ом, составляет порядка 260 мА, что незначительно превышает 0,1С для моего случая. Уменьшение номинала R3 приведет к повышению тока заряда пропорционально. Для получения требуемого тока я соединил параллельно два резистора по 10 Ом (не было нужного номинала). Мощность резисторов 2Вт.

Транзистор КТ815 возможно заменить на полный зарубежный аналог BD135 или другой, подобрав по характеристикам. У меня получилось 2 шт. КТ815, КТ817 и BD135

Об окончании заряда аккумуляторов сигнализирует светодиод. По мере заряда светодиод будет слабее светить до полного затухания в конце заряда. Светодиоды поставил сверхяркие 5 мм.
Кроме того зарядное устройство ATABA AT-308 предполагало зарядку 2 шт батарей 6F22 («Крона»), а так как я использую одну такую для питания мультиметра, то решил параллельно создать простенькую схему для заряда током 25-30 мА.


Первая часть схемы основана на микросхеме MC34063, которая будет преобразовывать 5В от блока питания, который я буду использовать для своей зарядки, в 10,5-11В. Это самое простое решение в моем случае, особенно при ограниченном пространстве для монтажа радиокомпонентов.

Для получения требуемого выходного напряжения необходимо подобрать резисторы делителя напряжения. В сети полно онлайн калькуляторов для этой микросхемы, если не хочется вести пересчет вручную.

Вторая часть схемы собрана на интегральном линейном стабилизаторе напряжения, а моем случае - тока, LM317L c выходным током до 100 мА. Собранный по такой схеме стабилизатор выполняет функцию стабилизации тока, что при зарядке аккумулятора является важной. Регулировка зарядного тока осуществляется подбором резистора R6, расчет которого можно посмотреть в даташите на микросхему либо рассчитать на онлайн калькуляторе. У себя поставил 51Ом для тока заряда 25 мА. Светодиод HL1 и резистор R5 выполняют роль узла индикации процесса заряда.

Поскольку схема должна была встать в корпусе АTABA AT-308, то пришлось разводить печатную плату с учетом «особенностей» корпуса, а именно - контактные площадки аккумуляторов, монтажные отверстия и индикаторные светодиоды должны были остаться на своих местах.


Печатную плату нарисовал в программе SprintLayout_6.0.


Перенес изображение на фольгированный текстолит по методу ЛУТ, протравил, просверлил отверстия на печатной плате и залудил печатные токоведущие дорожки оловяно-свинцовым припоем. Ну тут как обычно, рассказывать нечего.


Запаял радиокомпоненты на печатной плате в соответствии с принципиальной схемой. Резисторы R3 поднял над печатной платой для улучшения теплового режима.


Корпус бывшего АTABA AT-308 немного переделал, отрезав вилку для сетевого питания и заделал, образовавшееся отверстие, пластиковой вставкой.


Для подключения зарядного устройства к блоку питания сделал короткий USB шнур. Блок питания использую с характеристиками 5В 2,5А, что получается с запасом для зарядного устройства.